

KDD2023 Research Track

Task Relation-aware

Continual User Representation Learning

Sein Kim, Namkyeong Lee, Donghyun Kim, Minchul Yang, Chanyoung Park

Korean Advanced Institute of Science and Technology (KAIST) NAVER Corporation

Research Background Problems on User Modeling

- Inefficient: "Create" and "Train" new models for each new task
- Loss of positive transfer: disregard inter-task relationships and hinder potential positive transfer

<Example of model operation for each task>

Research Background Problems on User Modeling

- Inefficient: "Create" and "Train" new models for each new task
- Loss of positive transfer: disregard inter-task relationships and hinder potential positive transfer

Research Objective: Solve various tasks through a **Universal user representation** Maintain competitive performance across tasks using single universal user representation

Universal User Representation

Universal User Representation?

- A single user representation that can be utilized for various tasks
- Universal user representation should contain "general" and "representative" information that can perform well in various tasks

Universal User Representation Previous Works

Universal User Representation?

- A single user representation that can be utilized for various tasks
- Universal user representation should contain "general" and "representative" information that can perform well in various tasks

Previous studies have been focused on Transfer Learning / Multi-task Learning

Multi-task Learning (MTL)

Universal User Representation Previous approaches

Transfer Learning (TL)

Only applicable when a **pair of tasks** (source and target) is given → **Different models** are required for **each (target) task**

Universal User Representation Previous approaches

Transfer Learning (TL)

Data Data Data Model Model Phase 1 Phase 2

Multi-task Learning (MTL)

Only applicable when a **pair of tasks** (source and target) is given → **Different models** are required for **each (target) task**

Data Data model

Requires **all the tasks** and their associated **data** to be **available** in advance

→ The model should be **retrained** with **all the data across tasks** to train **new service (task)**

Universal User Representation Previous approaches

Transfer Learning (TL)

Data Data Data Phase 1 Phase 2

Multi-task Learning (MTL)

Only applicable when a **pair of tasks** (source and target) is given → **Different models** are required for **each (target) task**

Requires **all the tasks** and their associated **data** to be **available** in advance

→ The model should be **retrained** with **all the data across tasks** to train **new service (task)**

Both learning methods necessitate Large Scale Datasets to exist simultaneously In domains with continuous influx of new users and launching of new services, TL & MTL may not be suitable

Prompting the need for a new learning approach

Continual Learning?

The method of **sequentially learning** new knowledge in a **single model** while handling **multiple tasks**. The key aspect here is to **maintain** the **knowledge** acquired from **previous tasks**!

General Machine Learning

In traditional Machine Learning, it assumes i.i.d. samples from a fixed data distribution.

Continual Learning?

The method of **sequentially learning** new knowledge in a **single model** while handling **multiple tasks**. The key aspect here is to **maintain** the **knowledge** acquired from **previous tasks**!

General Machine Learning

In traditional Machine Learning, it assumes i.i.d. samples from a fixed data distribution.

Continual Learning

Continual Learning?

The method of **sequentially learning** new knowledge in a **single model** while handling **multiple tasks**. The key aspect here is to **maintain** the **knowledge** acquired from **previous tasks**!

General Machine Learning

In traditional Machine Learning, it assumes i.i.d. samples from a fixed data distribution.

Continual Learning

Continual Learning?

The method of **sequentially learning** new knowledge in a **single model** while handling **multiple tasks**. The key aspect here is to **maintain** the **knowledge** acquired from **previous tasks**!

General Machine Learning

In traditional Machine Learning, it assumes i.i.d. samples from a fixed data distribution.

Continual Learning

Continual Learning?

The method of **sequentially learning** new knowledge in a **single model** while handling **multiple tasks**. The key aspect here is to **maintain** the **knowledge** acquired from **previous tasks**!

General Machine Learning

In traditional Machine Learning, it assumes i.i.d. samples from a fixed data distribution.

Continual Learning Non i.i.d. stream

eam

Continual Learning?

The method of **sequentially learning** new knowledge in a **single model** while handling **multiple tasks**. The key aspect here is to **maintain** the **knowledge** acquired from **previous tasks**!

General Machine Learning

In traditional Machine Learning, it assumes i.i.d. samples from a fixed data distribution.

Continual Learning

Continual Learning?

The method of **sequentially learning** new knowledge in a **single model** while handling **multiple tasks**. The key aspect here is to **maintain** the **knowledge** acquired from **previous tasks**!

LongLongLongLongProvideEndEndEndEndTrain

Continual Learning Non i.i.d. stream

General Machine Learning

In traditional Machine Learning, it assumes i.i.d. samples from a fixed data distribution.

- Task-incremental Learning
 - **Inference** is performed for a **specific task** under the • context of knowing the task to be executed
- Domain-incremental Learning
 - All tasks have the **same labels**, but **different input** • domains
- Class-incremental Learning
 - Inference is conducted simultaneously for all learned • tasks

7 WEB TOON LINE End End End Train **Continual Learning**

Non i.i.d. stream

blog

N

End

- Task-incremental Learning
 - Inference is performed for a specific task under the context of knowing the task to be executed
- Domain-incremental Learning
 - All tasks have the same labels, but different input domains
- Class-incremental Learning
 - Inference is conducted simultaneously for all learned tasks
- Necessity of Continual Learning
 - In domains with continuous influx of new users and launching of new services, continual learning structure is suitable
 - Task-incremental learning is applied in the user modeling process to accommodate the diverse services available on online platforms

Continual Learning Challenges

Catastrophic Forgetting

When training a model in a **Continual Setting**, there is a situation where it becomes **biased** towards the **recent data distribution**

Positive Transfer

• Positive Forward Transfer

The knowledge learned from the previous task should be beneficial for the next task

• Positive Backward Transfer :

The knowledge learned **from the next task** should also be **helpful** for improving the performance of the **previous task**

Previous works: CONURE One Person, One Model, One World: Learning Continual User Representation without Forgetting

Key Idea: Parameter Isolation

When given a single model, assign specific parameters for each task

After training on a single task, select important parameters

 \rightarrow Retrain and freeze only the important parameters for the next task's learning

Backbone network: NextItNet

Example of Model Training Process

Previous works: CONURE One Person, One Model, One World: Learning Continual User Representation without Forgetting

Limitations of the previous work:

- Limitation of the parameter isolation-based methodology:
 - As tasks are sequentially learned, the number of parameters available for learning new tasks decreases and the performance of the model may degrade for tasks that come later in the sequence
 - Once all parameters are used, it is no longer possible to learn additional tasks
 - Since parameters from previous tasks are fixed, positive backward transfer does not occur

Previous works: CONURE One Person, One Model, One World: Learning Continual User Representation without Forgetting

Limitations of the previous work:

- Limitation of the parameter isolation-based methodology:
 - As tasks are sequentially learned, the number of parameters available for learning new tasks decreases and the performance of the model may degrade for tasks that come later in the sequence
 - Once all parameters are used, it is no longer possible to learn additional tasks
 - Since parameters from previous tasks are fixed, positive backward transfer does not occur
- > Limitation of **not considering** the **relationship** between tasks:
 - There exist specific relationships between tasks, for example, positively related tasks and negatively related tasks
 - By considering the relationships between tasks, **positive transfer becomes** possible, and **negative transfer** can be **prevented**
 - Existing work disregards task relationships, leading to their inability to capture potential performance improvements of the model

Motivation

Through the **continual learning**, train a **single model** capable of performing **multiple** sequence of **tasks** By considering the **relationships** between tasks, we **maximize positive transfer** and **minimize negative transfer**

Motivation

Through the **continual learning**, train a **single model** capable of performing **multiple** sequence of **tasks** By considering the **relationships** between tasks, we **maximize positive transfer** and **minimize negative transfer**

Key Idea

Task Embedding-guided Relation-Aware CONtinual learning (TERACON)

- Task Embedding: Learn task-specific masks (Soft masking)
- Pseudo labeling: Prevent catastrophic forgetting
- Relation-aware Task-specific Mask: Capture the task relationships

Learning Task-specific Mask via Task Embedding

- Generate task embeddings (randomly initialized) for each layer of the model
- Generate Task masking using a positive scaling hyper-parameter (denote s) and a sigmoid function (σ)
- Perform element-wise multiplication of the mask with each output of the model's layers

Task masking determines **how much to amplify or reduce** the layer output at each position (soft masking) → This allows **identification of important output** for specific tasks

Relation-aware Task-specific Mask

$$\begin{split} \mathbf{n}_{k}^{T_{i}} &= \sigma \left(s \cdot f_{k}^{T_{i}} \left[\tanh(s \cdot \mathbf{e}_{k}^{T_{i}}) \parallel (\parallel_{T \in \tilde{\mathcal{T}}_{i}} \mathbf{p}_{k}^{T}) \right] \right) \in \mathbb{R}^{f} \\ \tilde{\mathcal{T}}_{j} &= \{ T_{r} | T_{r} \in T_{1:i}, \text{where } (T_{i} = \text{ current task}) \text{ and } (j \neq 1) \end{split}$$

 $\mathbf{p}_k^T = \begin{bmatrix} \tanh(s \cdot \mathbf{e}_k^T) \parallel \tanh(-s \cdot \mathbf{e}_k^T) \end{bmatrix} \in \mathbb{R}^{2 \times f}$

 To capture the task relation, TERACON aggregate the information from the past tasks and the current task

 $r)\}$

- Using 1-layer MLP $f_k^{T_i}$, create relation-aware task-specific mask
- *f_k<sup>T_i* is used to learn how to amplify or diminish the information from a specific task while training the current task
 →Learn to use only the information from tasks that provide positive transfer to the current task
 </sup>

Overcoming Catastrophic Forgetting via Knowledge Retention

• If the **previous task** has been **adequately learned**, it is possible to **generate pseudo-labels** for previous task using current task's input

Overcoming Catastrophic Forgetting via Knowledge Retention

- If the **previous task** has been **adequately learned**, it is possible to **generate pseudo-labels** for previous task using current task's input
- E.g.,

Past Task: Learn the age of users A, B, C

Current Task: Predict the gender of users C, D, E

current input (users C, D, E) \rightarrow Generates **pseudo-labels** for the **ages** of C, D, E

- By training on these pseudo-labels, it is possible to retain the age information for C and learn the age information of D, E
- By training on pseudo-labels, the knowledge from past tasks can be preserved

Overcoming Catastrophic Forgetting via Knowledge Retention

- If the **previous task** has been **adequately learned**, it is possible to **generate pseudo-labels** for previous task using current task's input
- E.g.,

Past Task: Learn the age of users A, B, C

Current Task: Predict the gender of users C, D, E

current input (users C, D, E) \rightarrow Generates **pseudo-labels** for the **ages** of C, D, E

- By training on these pseudo-labels, it is possible to retain the age information for C and learn the age information of D, E
- By training on pseudo-labels, the knowledge from past tasks can be preserved

(b) Knowledge retention

$$\mathcal{L}_{\mathrm{KR}} = \mathbb{E}_{1 \le j < i} \left[\mathbb{E}_{u_l \in \mathcal{U}^{T_i}} \left[L_{\mathrm{MSE}}(G^{T_j}(\mathcal{M}(\mathbf{x}^{u_l}; \mathbf{m}^{T_j})), \tilde{\mathbf{y}}_{u_l}^{T_j}) \right] \right]$$

Relation-aware User Sampling Strategy

• Using the entire input to create pseudo-labels is inefficient

Relation-aware User Sampling Strategy

- Using the entire input to create pseudo-labels is inefficient
- Therefore, create pseudo-labels using **only a portion** of the **input**

 $\mathcal{U}_{s}^{T_{i}}(j) \leftarrow \text{sample}(\mathcal{U}^{T_{i}}, \rho_{i,j})$

Relation-aware User Sampling Strategy

- Using the entire input to create pseudo-labels is inefficient
- Therefore, create pseudo-labels using only a portion of the input

$$\mathcal{U}_{s}^{T_{i}}(j) \leftarrow \text{sample}(\mathcal{U}^{T_{i}}, \rho_{i,j})$$

ive transfer exists $\rho_{i,j} = 1 - \frac{1}{K} \sum_{k=1}^{K} \sigma(c \times cos(m_k^{T_i}, \tilde{m}_k^{T_j}))$ imilar task): $m_k^{T_i}$: mask of current task (T_i)

 $\widetilde{m{m}}_k^{\widetilde{T}_j}$: mask of T_j prior to training T_i

- Idea: in continual learning, positive transfer exists

 → Task with positive transfer (similar task):
 knowledge retention can be achieved with fewer samples
 → Task with negative transfer (dissimilar task):
 - **more samples** are required to retain knowledge and prevent catastrophic forgetting

Relation-aware User Sampling Strategy

- Using the **entire input** to create pseudo-labels is **inefficient**
- Therefore, create pseudo-labels using only a portion of the input

$$\mathcal{U}_{s}^{T_{i}}(j) \leftarrow \text{sample}(\mathcal{U}^{T_{i}}, \rho_{i,j})$$

$$\rho_{i,j} = 1 - \frac{1}{K} \sum_{k=1}^{K} \sigma(c \times \underline{\cos(\mathbf{m}_{k}^{T_{i}}, \tilde{\mathbf{m}}_{k}^{T_{j}})})$$

 $m{m}_k^{T_i}$: mask of current task (T_i) $m{\widetilde{m}}_k^{T_j}$: mask of T_j prior to training T_i

Idea: in continual learning, positive transfer exists
→ Task with positive transfer (similar task):

knowledge retention can be achieved with **fewer samples**

→ Task with negative transfer (dissimilar task): more samples are required to retain knowledge and prevent catastrophic forgetting

$$\mathcal{L}_{\mathrm{KR}} = \mathbb{E}_{1 \le j < i} \left[\mathbb{E}_{u_l \in \mathcal{U}^{T_i}} \left[L_{\mathrm{MSE}} (G^{T_j} (\mathcal{M}(\mathbf{x}^{u_l}; \mathbf{m}^{T_j})), \tilde{\mathbf{y}}_{u_l}^{T_j}) \right] \right]$$
$$\mathcal{L}_{\mathrm{KR}+} = \mathbb{E}_{1 \le j < i} \left[\frac{\rho_{i,j}}{\sum_{k=1}^{i-1} \rho_{i,k}} \sum_{u_l \in \mathcal{U}_s^{T_i}(j)} \mathcal{L}_{\mathrm{MSE}} (G^{T_j} (\mathcal{M}(\mathbf{x}^{u_l}; \mathbf{m}^{T_j})), \tilde{\mathbf{y}}_{u_l}^{T_j}) \right]$$

TERACON Experiments

Datasets & Tasks Descriptions

Tencent TL (TTL) dataset

-												
Datasat	Task 1 (T1)		Task 2 (T ₂)		Task 3 (T ₃)		Task 4 (T ₄)		Task 5 (T5)		Task 6 (T_6)	
Dataset	$ \mathcal{U}^{T_1} $	$ \mathcal{Y}^{T_1} $	$ \mathcal{U}^{T_2} $	$ \mathcal{Y}^{T_2} $	$ \mathcal{U}^{T_3} $	$ \mathcal{Y}^{T_3} $	$ \mathcal{U}^{T_4} $	$ \mathcal{Y}^{T_4} $	$ \mathcal{U}^{T_5} $	$ \mathcal{Y}^{T_5} $	$ \mathcal{U}^{T_6} $	$ \mathcal{Y}^{T_6} $
Watching		hing	Clic	king	Thun	nb-up	Ag	ge	Gender		Life status	
I IL	1.47M	0.64M	1.39M	17K	0.25M	7K	1.47M	8	1.46M	2	1M	6
MI	Clicking		4-star		5-star							
MIL	0.74M	54K	0.67M	26K	0.35M	16K	-		-		-	
NAVER	Search Query		Search Query		Item Category		Item Category		Gender		Ag	ge
Shopping	0.9M	0.58M	0.59M	0.51M	0.15M	4K	0.15M	10	0.82M	2	0.82M	9

$T_1 \rightarrow$ (userID, recent 100 news & video on QQ browser platform)	Sequential Recommendation
$T_2 \rightarrow$ (userID, one of clicking interactions on the Kandian platform)	Item Recommendation
$T_3 \rightarrow$ (userID, one of thumb-up interactions on the Kandian platform)	
$T_4 \rightarrow$ (userID, age)	
$T_5 \rightarrow$ (userID, gender)	Profile Prediction
$T_6 \rightarrow$ (userID, Life status categories)	

ML (Movie Lens) dataset

$T_1 \rightarrow$ (userID, recent 30 clicking interactions)	Sequential Recommendation
$T_2 \rightarrow$ (userID, an item that is rated higher than 4) $T_3 \rightarrow$ (userID, one of 5-star items)	Item Recommendation

NAVER Shopping dataset

$T_1 \rightarrow$ (userID, recent 60 search queries in NAVER browser platform) $T_2 \rightarrow$ (userID, next five search queries after T_1 in NAVER browser platform)	Sequential Learning
$T_3 \rightarrow$ (userID, minor categories of user-purchased items in NAVER shopping platform) $T_4 \rightarrow$ (userID, major categories of user-purchased items in NAVER shopping platform)	Item Recommendation
T_5 → (userID, gender) T_6 → (userID, age)	Profile Prediction

Conduct diverse tasks using the user's previous search history

Search history holds the most comprehensive information about the user \rightarrow Generates a meaningful Universal user presentation

Overall Performance

		Т	TL			ML			NAVER	Shopping		
T	T_2	T_3	T_4	T_5	$T_6 \parallel T$	$T_1 T_2$	$T_3 \parallel T_1$	T_2	T_3	T_4	T ₅	T ₆
SinMo 0.0446	0.0104	0.0168	0.4475	0.8901	0.4376 0.0	0.0186	0.0314 0.034	9 0.0265	0.0292	0.1984	0.5742	0.2985
FineAll 0.0446	0.0144	0.0218	0.5232	0.8851	0.4596 0.0	0.0224	0.0328 0.034	9 0.0318	0.0332	0.2367	0.6204	0.3247
PeterRec 0.0446	0.0147	0.0224	0.5469	0.8841	0.4749 0.0	0.0224	0.0308 0.034	9 0.0317	0.0322	0.2370	0.6257	0.3258
MTL -	0.0102	0.0142	0.4672	0.8012	0.3993	- 0.0144	0.0267 -	0.0143	0.0266	0.1372	0.4998	0.2322
Piggyback 0.0446	0.0157	0.0236	0.5931	0.8990	0.5100 0.0	0566 0.0214	0.0302 0.034	9 0.0314	0.0322	0.2349	0.6188	0.3129
HAT 0.0424	0.0174	0.0279	0.5880	0.9002	0.5126 0.0	543 0.0227	0.0372 0.034	4 0.0356	0.0317	0.2411	0.6294	0.3296
CONURE 0.0457	0.0169	0.0276	0.5546	0.8967	0.5230 0.0	598 0.0244	0.0384 0.036	1 0.0322	0.0305	0.2403	0.6391	0.3340
TERACON 0.0474	0.0189	0.0316	0.6066	0.9048	0.5386 0.0	577 0.0270	0.0459 0.036	1 0.0359	0.0337	0.2444	0.6381	0.3354

Trains a single model for each task from scratch

Transfer Learning $(T_1 \rightarrow T_i)$

Multi-task Learning

Continual Learning

Model performance

Observations

Positive transfer occurs between tasks (SinMo vs. others)

SinMo means single model \rightarrow Learns tasks separately (# of model = # of tasks)

- Continual learning-based methods perform better than other universal user representation method
- TERACON outperforms the continual learning-based approaches

ightarrow Modeling the **relationship** between tasks is **crucial**

Overall Performance

(a) Original		T_1			T_2			T_3			T_4			T_5			T_6	
	MRR@5	BWT	FWT	MRR@5	BWT	FWT	MRR@5	BWT	FWT	ACC	BWT	FWT	ACC	BWT	FWT	ACC	BWT	FWT
HAT	0.0424	-11.30%	-	0.0174	-7.45%	80.77%	0.0279	-0.71%	67.25%	0.5880	-2.52%	34.79%	0.9002	-1.98%	3.17%	0.5126	-	17.14%
CONURE	0.0457	-	-	0.0169	-	62.50%	0.0276	-	64.29%	0.5546	-	23.93%	0.8967	-	0.74%	0.5230	-	19.52%
TERACON	0.0474	-0.83%	-	0.0189	0.0%	81.73%	0.0316	3.27%	82.13%	0.6066	1.23%	33.91%	0.9048	0.01%	1.64%	0.5386	-	23.08%
(b) Powercod		T_1			T_6			T_5			T_4			T_3			T_2	
(b) Reversed	MRR@5	T ₁ BWT	FWT	ACC	T ₆ BWT	FWT	ACC	T ₅ BWT	FWT	ACC	T ₄ BWT	FWT	MRR@5	T ₃ BWT	FWT	MRR@5	T ₂ BWT	FWT
(b) Reversed	MRR@5	<i>T</i> ₁ BWT -11.72%	FWT	ACC 0.5025	<i>T</i> ₆ BWT -4.70%	FWT 20.49%	ACC 0.8980	T ₅ BWT -0.33%	FWT 1.22%	ACC 0.5770	T ₄ BWT -1.72%	FWT 31.19%	MRR@5	<i>T</i> ₃ BWT -0.37%	FWT 60.71%	MRR@5 0.0184	T ₂ BWT	FWT 76.92%
(b) Reversed HAT CONURE	MRR@5	<i>T</i> ₁ BWT -11.72% -	FWT - -	ACC 0.5025 0.5322	T ₆ BWT -4.70% -	FWT 20.49% 21.62%	ACC 0.8980 0.8849	T ₅ BWT -0.33%	FWT 1.22% -0.58%	ACC 0.5770 0.5546	T ₄ BWT -1.72%	FWT 31.19% 23.93%	MRR@5 0.0269 0.0164	<i>T</i> ₃ BWT -0.37%	FWT 60.71% -2.38%	MRR@5 0.0184 0.0119	<i>T</i> ₂ BWT	FWT 76.92% 14.42%

BWT: Backward Transfer FWT: Forward Transfer

Reversed task sequence experiment

Observations

- > CONURE is a **parameter isolation**-based method that **prevents Catastrophic forgetting** even when learning a new task
- TERACON exhibits Positive Backward Transfer

→Because TERACON allows the entire model parameters to be modified during the entire training sequence, enabling the knowledge obtained from the new tasks to be transferred to the previous tasks

TERACON is robust to the change of task orders

→ Sequence of tasks cannot be arbitrarily determined in the real world, highlighting the importance of robustness on task order

→The change of task order significantly deteriorates the performance of CONURE (parameter isolation-based method)

 \rightarrow TERACON considers task relationships, is **not parameter isolation-based method** \rightarrow Robust on the task order

TERACON Experiments

Overall Performance

				TTL			
	<i>T</i> ₁	T_2	T_3	Τ'	T_4	T_5	T_6
HAT	0.0411	0.0165	0.0259		0.5424	0.8870	0.4873
	(-3.06 %)	(-5.17 %)	(-7.16 %)	-	(-7.76 %)	(-1.47 %)	(-4.94 %)
CONTINE	0.0457	0.0169	0.0276		0.5245	0.8663	0.4469
CONORE	(0.0 %)	(0.0 %)	(0.0 %)	-	(-5.43 %)	(-3.39 %)	(-14.55 %)
TERACON	0.0472	0.0189	0.0314		0.6022	0.9014	0.5312
TERACON	(-0.42 %)	(0.0 %)	(-0.63 %)	-	(-0.73 %)	(-0.38 %)	(-1.37 %)

	NAVER Shopping									
	<i>T</i> ₁	T_2	Τ'	T_3	T_4	T_5	T_6			
НАТ	0.0314	0.0302		0.0309	0.2357	0.6219	0.3180			
IIAI	(-8.72%)	(-15.16%)	-	(-2.52%)	(-2.24%)	(-1.19%)	(-3.51%)			
CONTIRE	0.0361	0.0322	_	0.0291	0.2231	0.6202	0.3122			
CONORE	(0.0%)	(0.0%)	-	(-4.59%)	(-7.16%)	(-2.95%)	(-6.53%)			
TERACON	0.0346	0.0336		0.0329	0.2378	0.6348	0.3329			
TERACON	(-4.15%)	(-6.41%)	-	(-2.37%)	(-2.7%)	(-0.52%)	(-0.75%)			

Performance degradation ratio after training on a noisy task

Noisy task: randomly sample 50% of users and generate a random label of 50 classes for each user

Observations

- > TERACON is **robust** to the **negative transfer**
 - ightarrow Automatically disregard the information from the noisy task
 - → The task-specific masks of task T' learned by TERACON exhibit low similarity with that of other tasks

Conclusion

Propose a **continual learning-based** universal user representation method

Considers the **relationships** between tasks to induce positive transfer and prevent catastrophic forgetting

Key Idea

- Task Embedding: Learn task-specific masks (Soft masking)
- Pseudo labeling: Prevent catastrophic forgetting
- Relation-aware Task-specific Mask: Capture the task relationships

Extensive experiments show

- Occurrence of positive backward transfer
- Improvement of performance of universal user representation
- Robustness on task order and negative transfer
- Analysis on task embedding and negative related tasks

Thank you!

[Full Paper] https://arxiv.org/abs/2306.01792

[Source Code] https://github.com/Sein-Kim/TERACON

[Lab Homepage] http://dsail.kaist.ac.kr

[Email] rlatpdlsgns@kaist.ac.kr

TERACON is efficient learner

	Sampling	g $ T_1$	T_2	T_3	T_4	T_5	T_6
$ \rho_{i,j} = \rho_{min} $	1	0.0470	0.0184 (625.47)	0.0280 (77.82)	0.6027 (417.65)	0.9007 (510.80)	0.5385 (414.44)
$\rho_{i,j} = \text{Eq.15}$	1	0.0474	0.0189 (625.47)	0.0316 (90.79)	0.6066 (504.3)	0.9048 (583.77)	0.5386 (494.14)
$\rho_{i,j} = 1.0$	×	0.0475 (-)	0.0190 (1146.70)	0.0313 (151.32)	0.6143 (1179.31)	0.9047 (1355.18)	0.5403 (797.09)

User sampling

Observations

By sampling users while considering the relationship between tasks, TERACON can achieve both efficiency and performance

Observations

Compared to the existing models, TERACON converges in fewer epochs \rightarrow TERACON provides a better initial point for new tasks